Compressibility, thermal expansion coefficient and heat capacity of CH4 and CO2 hydrate mixtures using molecular dynamics simulations.
نویسندگان
چکیده
Understanding the thermal and mechanical properties of CH4 and CO2 hydrates is essential for the replacement of CH4 with CO2 in natural hydrate deposits as well as for CO2 sequestration and storage. In this work, we present isothermal compressibility, isobaric thermal expansion coefficient and specific heat capacity of fully occupied single-crystal sI-CH4 hydrates, CO2 hydrates and hydrates of their mixture using molecular dynamics simulations. Eight rigid/nonpolarisable water interaction models and three CH4 and CO2 interaction potentials were selected to examine the atomic interactions in the sI hydrate structure. The TIP4P/2005 water model combined with the DACNIS united-atom CH4 potential and TraPPE CO2 rigid potential were found to be suitable molecular interaction models. Using these molecular models, the results indicate that both the lattice parameters and the compressibility of the sI hydrates agree with those from experimental measurements. The calculated bulk modulus for any mixture ratio of CH4 and CO2 hydrates varies between 8.5 GPa and 10.4 GPa at 271.15 K between 10 and 100 MPa. The calculated thermal expansion and specific heat capacities of CH4 hydrates are also comparable with experimental values above approximately 260 K. The compressibility and expansion coefficient of guest gas mixture hydrates increase with an increasing ratio of CO2-to-CH4, while the bulk modulus and specific heat capacity exhibit the opposite trend. The presented results for the specific heat capacities of 2220-2699.0 J kg(-1) K(-1) for any mixture ratio of CH4 and CO2 hydrates are the first reported so far. These computational results provide a useful database for practical natural gas recovery from CH4 hydrates in deep oceans where CO2 is considered to replace CH4, as well as for phase equilibrium and mechanical stability of gas hydrate-bearing sediments. The computational schemes also provide an appropriate balance between computational accuracy and cost for predicting mechanical and thermal properties of gas hydrates in the high temperature range (≥260 K), and the schemes may be useful for the study of other complex hydrate systems.
منابع مشابه
Dynamics and Separation-based Adsorption of Binary Mixtures of CH4, CO2 and H2S on MIL-47: GCMC and MD Studies
This study aimed to investigate the adsorption of CH4, CO2, H2S at a temperature of 298.15 K and pressurerange of 0.1 to 30 atm, and compare the results with experimental data for MIL-47 using GCMC. Themaximum CH4, CO2 and H2S adsorptions were 3.6, 10.45, and 12.57 mol.kg-1, respectively. In addition, theselectivity for binary mixtures of CH4/CO2 and CH4/H2S was calculated. Th...
متن کاملتأثیر ناکاملی خطی در جهت [001] بلوری بر خواص گرمایی بلور نقره
The aim of this investigation was to calculate the thermal properties of silver crystal in the presence of linear imperfection. The simulations were performed by molecular dynamics simulation technique in NPT as well as NVT ensemble based on quantum Sutton-Chen many body potential. The thermal properties including cohesive energy, melting temperature, isobaric heat capacity and thermal expansi...
متن کاملStudy on the Adsorption, Diffusion and Permeation Selectivity of Shale Gas in Organics
As kerogen is the main organic component in shale, the adsorption capacity, diffusion and permeability of the gas in kerogen plays an important role in shale gas production. Based on the molecular model of type II kerogen, an organic nanoporous structure was established. The Grand Canonical Monte Carlo (GCMC) and Molecular Dynamics (MD) methods were used to study the adsorption and diffusion ca...
متن کاملThermal conductivity calculation of magnetite using molecular dynamics simulation
In the current research, thermal conductivity of magnetite (Fe3O4) has been calculated using molecular dynamic simulation. The rNEMD Molecular Dynamics Method provided in the LMMPS package is used for the simulation of the thermal conductivity. The effects of magnetite layer size and temperature on the thermal conductivity have been investigated. The numerical results have...
متن کاملA Counter-Current Heat-Exchange Reactor for the Thermal Stimulation of Hydrate-Bearing Sediments
Since huge amounts of CH4 are bound in natural gas hydrates occurring at active and passive continental margins and in permafrost regions, the production of natural gas from hydrate-bearing sediments has become of more and more interest. Three different methods to destabilize hydrates and release the CH4 gas are discussed in principle: thermal stimulation, depressurization and chemical stimulat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 4 شماره
صفحات -
تاریخ انتشار 2015